- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Patel, Brijesh (2)
-
Sunkara, Srinidhi (2)
-
Yanamala, Naveena (2)
-
Casaclang-Verzosa, Grace (1)
-
Farjo, Peter (1)
-
Farjo, Peter D. (1)
-
Hathaway, Quincy A. (1)
-
Kagiyama, Nobuyuki (1)
-
Krishna, Nanda H. (1)
-
Patel, Heenaben (1)
-
Patel, Heenaben B (1)
-
Radhakrishnan, Aditya (1)
-
Raina, Sameer (1)
-
Sengupta, Partho P (1)
-
Sengupta, Partho P. (1)
-
Tokodi, Márton (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Yanamala, Naveena; Krishna, Nanda H.; Hathaway, Quincy A.; Radhakrishnan, Aditya; Sunkara, Srinidhi; Patel, Heenaben; Farjo, Peter; Patel, Brijesh; Sengupta, Partho P. (, npj Digital Medicine)Abstract Patients with influenza and SARS-CoV2/Coronavirus disease 2019 (COVID-19) infections have a different clinical course and outcomes. We developed and validated a supervised machine learning pipeline to distinguish the two viral infections using the available vital signs and demographic dataset from the first hospital/emergency room encounters of 3883 patients who had confirmed diagnoses of influenza A/B, COVID-19 or negative laboratory test results. The models were able to achieve an area under the receiver operating characteristic curve (ROC AUC) of at least 97% using our multiclass classifier. The predictive models were externally validated on 15,697 encounters in 3125 patients available on TrinetX database that contains patient-level data from different healthcare organizations. The influenza vs COVID-19-positive model had an AUC of 98.8%, and 92.8% on the internal and external test sets, respectively. Our study illustrates the potentials of machine-learning models for accurately distinguishing the two viral infections. The code is made available athttps://github.com/ynaveena/COVID-19-vs-Influenzaand may have utility as a frontline diagnostic tool to aid healthcare workers in triaging patients once the two viral infections start cocirculating in the communities.more » « less
An official website of the United States government
